Evaluation of CERES-MODIS Ed4 Cloud Fraction, Cloud Phase Classification and Cloud Height with ARM Ground Observations

Shaoyue Qiu, Baike Xi and Xiquan Dong, University of Arizona Sunny Sun-Mack, Bill Smith Jr., Pat Minnis, NASA LaRc

Publications (2018)

- Tian, J., X. Dong, B. Xi, P. Minnis, S. Sun-Mack and W. L. Smith, Jr., **2018**: Comparisons of Water Path in Deep Convective Systems among CERES-MODIS, GOES, and Ground-based retrievals **JGR**, 123. https://doi.org/10.1002/2017JD027498.
- Qiu S., B. Xi and X. Dong, **2018**: Influence of wind directions on thermodynamic properties and Arctic mixed-phase clouds at Barrow, Alaska in autumn season. **Accepted by JGR**.
- Huang, Y., X. Dong, B. Xi and Y. Deng, 2018: A Survey of the Atmospheric Physical and Dynamical Processes Key to the Onset of Arctic Sea Ice Melting in Spring. Accepted by Climate Dynamics
- McHardy T.M., X. Dong, B. Xi, M. M. Thieman, and P. Minnis, **2018**: Comparison of Daytime low-level Cloud Properties derived from GOES and ARM SGP Measurements. **Submitted to JGR**.
- Tian, J., X. Dong, B. Xi, and C.R. Williams, **2018**: Estimation of Liquid Water Path in Stratiform Precipitation Systems using Radar Measurements. **Submitted to JGR**.
- Dolinar E.K., X. Dong, B. Xi, J.H. Jiang, H. Su, N.G. Loeb, and J.R. Campbell. **2018**: A Record of Global Single-layered Ice Cloud Properties and Associated Radiative Heating Rate Profiles from an A-Train Perspective. **Submitted to Climate Dynamics**.

Outlines

Part I: Cloud fraction and phase detection of CERES-MODIS Ed4 over DOE ARM NSA site;

Part II: Update of the cloud height comparison between CERES-MODIS Ed4 and ARM measurements over NSA site;

Part III: Evaluate IWP retrieved by Terra+NPP Ed1A over MAO site.

Scientific Questions

- (1) How does the CERES-MODIS cloud mask perform under different surface conditions and day/night time over the Arctic?
- (2) How does the CERES-MODIS phase algorithm perform over the Arctic?
- (3) What is the difference between the CERES-MODIS lapse rate (Γ) and the ground truth; and how much does this difference influence the cloud height retrieval?
- (4) How close is the Terra+NPP Ed1A retrieved IWP compared with ground-based retrieval for DCS at MAO?

DATA and Methods

ARM

Part I and II:

- 1-h average ground-based observations centered at the time of each satellite overpass
- Cloud radar, micropulse lidar (MPL), ceilometer, microwave radiometer are used for cloud properties retrieval
- Cloud phase are classified using lidar backscatter, MPL depolarization ratio, LWP and cloud temperature from sounding

Part III:

• One hour average of ground-based IWP centered at overpass time.

CERES-MODIS/CCCM

Part I and II:

- CERES-MODIS Ed4 SSF data that have overpasses within the 30 ×30 km² box centered at ARM site
- CCCM data averaged within 100 ×100 km² box;
- CERES-MODIS used the first layer phase classification with 1.2 threshold

Part III:

• Terra+NPP Ed1A IWP is from 1x1 degree data product;

CERES-MODIS (CM) Ed4, CCCM and ARM NSA Cloud Fractions

- CERES-MODIS has 46,486 overpasses; CCCM has 417 overpasses at NSA;
- CERES-MODIS monthly mean CFs follow ARM ones with an annual negative bias of 5%.
- CCCM has too few overpasses at NSA site to be representative for the seasonal variation.

CERES-MODIS Ed4 Cloud Fraction for Day and Night

Daytime (SZA < 82°)

ADM CEC

Night time (SZA \geq 82°)

- 41% daytime samples and ~59% nighttime samples;
- Daytime CERES-MODIS CFs basically follow their total CFs, but night time CFs have >10% biases in a few months, twilight CFs do not follow

CERES-MODIS Ed4 Cloud Fraction for Day and Night

Daytime (SZA < 82°)

Night time (SZA \geq 82°)

- 41% daytime samples and ~59% nighttime samples;
- Daytime CERES-MODIS CFs basically follow their total CFs, but night time CFs have >10% biases in a few months, twilight CFs do not follow ADM CFs

CERES-MODIS (CM) Ed4 Phase Detection ability

FAR= #sample (ARM observed Ice or Clear, CM observed liquid cloud) #sample (CM observed liquid cloud)

CERES-MOSIS Ed4 Phase detection—Daytime (SZA < 82°)

- CERES-MODIS liquid CFs agree with ARM ones within 0.2%, ice CFs have -4.2% bias
- CM Phase classification agrees with ARM from May to October (POD>90%, FAR<30%)
- In February and March, CM has more liquid and less ice clouds compared with ARM

CERES-MODIS Ed4 Phase detection—Night time (SZA \geq 82°)

- CERES-MODIS phase algorithm has -5.7% liquid cloud bias, and +1.8% ice cloud bias because CM has lower liquid partition at nighttime;
- The PODs are >80% and the FAR <30% from May to October.

Liquid phase fraction as a function of temperature

- CERES-MODIS uses first layer effective temperature; ARM use cloud center temperature
- Similar to previous results, night-time CERES-MODIS phase algorithm under-estimates liquid phase fraction

CERES-MODIS Ed4 Cloud Fraction for Different Levels

CM has ~16% less low clouds, 2% more middle clouds, and ~6% more high clouds than ARM. Further study may need to explain the differences, for example, day/night time diff.

Recalculate CM Z_{top} (Δ) using ARM sounding T profile

$$Z_{eff} = \frac{T_{eff}(CM) - T_{sfc}(ARM)}{\Gamma}$$

- The recalculated CM Z_{top} (Δ) use T_{eff} (CM), T_{sfc} (ARM) and ARM monthly mean lapse rates. ΔZ_{top} decreases from ~400 m to 20 m;
- RMSE: Terra: decreases from 0.97 to 0.57; Aqua: decreases from 0.83 to 0.4;
- The ARM monthly mean lapse rates:

Γ \Mon	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.
(K/km)	-3.9	-3.5	-5.0	-5.3	-7.9	-6.8	-6.2	-6.7	-7.2	-7.5	-5.7	-5.3

CERES-MODIS and **ARM** Sounding Lapse rates

Daytime

Γ \Mon	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
ARM			-5.1	-5.7	-7.9	-7.0	-6.6	-7.2	-7.6	-8.2			-6.9
TERRA	-6.9	-6.8	-7.0	-7.0	-7.0	-6.6	-7.0	-6.3	-5.4	-7.3	-7.1	-6.9	-6.7

Nighttime

Γ \Mon	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
ARM	-4.0			-5.3	-7.5	-6.2		-6.5	-7.0	-7.3	-5.4	-5.4	-6.0
TERRA	-7.2	-7.2	-7.3	-7.2	-7.1	-7.1	-7.1	-6.9	-6.2	-7.2	-7.3	-7.4	-7.1

For single layer low-level mixed-phase clouds:

ARM lapse rate $(\Gamma_{arm}) = (T_{center} - T_{sfc})/(Z_{ceter} - Z_{sfc})$ (samples>10)

- Daytime: Although annual mean lapse rates are close to each other, there are large monthly variations in Spring and Fall seasons.
- Nighttime: CM over-estimates lapse rates for most of months except for May and September

Recalculate CM Z_{top} (Δ) using ARM and CM lapse rate

Daytime

Night Time

	ARM Z _{top}	Terra Z _{top}	Z_top (ARM T_sfc , Γ_arm)	$egin{aligned} \mathbf{Z_{top}} \\ \mathbf{(ARM} \ \mathbf{T_{sfc'}} \\ \Gamma_{CM} \end{aligned}$
Annual Mean	1.08	1.47	1.00	1.03
Bias	/	0.39	-0.08	-0.05
RMSE	/	0.89	0.51	0.56

	ARM Z _{top}	Terra Z _{top}	$egin{array}{c} {\sf Z}_{\sf top} \ {\sf (ARM} \ {\sf T}_{\sf sfc}, \ {\sf \Gamma}_{\sf arm} \ {\sf)} \end{array}$	$egin{array}{c} {\sf Z}_{\sf top} \\ {\sf (ARM} \ {\sf T}_{\sf sfc}, \\ {\sf \Gamma}_{\sf CM} {\sf)} \end{array}$
Annual Mean	1.06	1.63	0.96	0.83
Bias	/	0.57	-0.25	-0.18
RMSE	/	1.00	0.57	0.60

Recalculate Z_{top} (Terra) using CM T_{eff} , Γ_{arm} and Γ_{CM} with ARM T_{sfc} ;

- Both recalculated Z_{top} have smaller bias than CM Z_{top} compared to ARM Z_{top}
- Recalculated Z_{top} changes 3% (13%) using ARM and CM lapse rate for day (night) time; it changes 30% (50%) using ARM and GMAO T_{sfc} for day (night) time
- Probably bias in T_{sfc} cause the CM cloud height bias

$\Delta T_{\rm sfc}$ adjustment to force $Z_{\rm top}(CM) = Z_{\rm top}(ARM)$ when using either $\Gamma_{\rm arm}$ or $\Gamma_{\rm CM}$

	ΔT _{sfc} ,°C	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Daytime	$\Gamma_{ m arm}$			-0.2	-0.2	-0.8	-1.3	0.2	-0.4	-0.4	-1.9		
,	Γ_{CM}			-2.2	-1.5	-0.0	-0.9	-0.1	+0.4	+2.0	-0.7		

	ΔT _{sfc} ,°C	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Nighttime	$\Gamma_{ m arm}$	0.1			-1.2	-1.1	-0.4		-0.5	-0.05	-1.2	0.2	-1.0
	Γ_{CM}	-3.4			-3.3	-0.9	-0.9		-0.8	+0.8	-1.2	-2.4	-3.2

If CM products keep using Γ_{CM} then the adjustment of T_{sfc} can be as follows: during the daytime, ΔT_{sfc} ranges from -2.2 to +2.0 degree and during nighttime ranges from -3.4 to +0.8 degree. Most of them are negative except three marked in yellow.

Conclusions

Part I:

- **CERES-MODIS** Ed4 cloud mask over the Arctic agrees well with ground-based observation. The annual CF bias is of -5% for both day and night time, but the daytime CFs from both measurements follow the similar seasonal variations;
- **CERES-MODIS** Ed4 phase detection also agrees well with ground-based phase classification from lidar, radar, MWR observations; the liquid CF bias is -3.8%, and the ice CF bias is -0.2%;
- **CM** daytime liquid CF is slightly higher but night time is lower than ARM;
- **❖**CM has ~16% less low clouds, ~6% more high clouds than ARM, similar mid clouds as ARM.

Part II:

ightharpoonup Although $\Gamma_{\rm CM}$ differs from $\Gamma_{\rm arm}$, $T_{\rm sfc}$ is a more important factor for getting correct $Z_{\rm top}$.

3. Evaluate IWP for GoAmazon (Tropical) cases using Terra+NPP Ed1A product in 1x1 degree grid over MAO

Jingjing Tian

TERRA+NPP IWP

